Step of Proof: absval_ubound
12,41
postcript
pdf
Inference at
*
1
I
of proof for Lemma
absval
ubound
:
1.
i
:
2.
n
:
(|
i
|
n
)
(((-
n
)
i
) & (
i
n
))
latex
by
InteriorProof
((((Unfold `absval` 0)
CollapseTHEN (SplitOnConclITE))
)
CollapseTHENA (
CollapseTHENA (
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t
CollapseTHENA (
) inil_term)))
latex
C
1
: .....truecase..... NILNIL
C1:
3. 0
i
C1:
(
i
n
)
(((-
n
)
i
) & (
i
n
))
C
2
: .....falsecase..... NILNIL
C2:
3.
i
< 0
C2:
((-
i
)
n
)
(((-
n
)
i
) & (
i
n
))
C
.
Definitions
T
,
ff
,
P
Q
,
tt
,
P
Q
,
x
:
A
.
B
(
x
)
,
if
b
then
t
else
f
fi
,
P
&
Q
,
|
i
|
,
P
Q
,
True
,
,
t
T
,
Unit
,
,
Lemmas
assert
of
lt
int
,
bnot
of
le
int
,
true
wf
,
squash
wf
,
eqff
to
assert
,
assert
of
le
int
,
eqtt
to
assert
,
iff
transitivity
,
bnot
wf
,
lt
int
wf
,
le
wf
,
assert
wf
,
bool
wf
,
le
int
wf
origin